Background to ILUC and other mechanisms influencing use of bioenergy to replace fossil energy

Uwe R. Fritsche
Scientific Director, IINAS
International Institute for Sustainability Analysis and Strategy

presented at the ETIP Bioenergy 8th Stakeholder Plenary Meeting
April 11-12, 2018 in Brussels
Overview

- **ILUC**: concept, data on ILUC-related GHG emissions of biofuels; considerations for future iLUC policies
- “C debt” for bioenergy from forests; risk matrix approach
- **Bioeconomy** with broader system boundaries to avoid “cherry picking” and burden shifting; sustainability requirements for all biomass
- Potential longer-term (2050) view, role of **BECCS**
- SDGs and acceptable “**bioenergy corridor**” until 2030
Indirect LUC

• ILUC occurs outside system boundaries - for all incremental use

• iLUC of bioenergy = direct LUC of agriculture

• non-local character (modeling instead of monitoring); **real** world: only **direct** LUC

• **Views:** analytical (science) vs. regulatory (policy)

• iLUC factor = proxy for regulation
Selected Results on ILUC (1)

GHG emissions only from ILUC [g CO₂-eq/MJ]

- = 50% GHG reduction

Comparative to E1OH - with high risks

ca. 320
Selected Results on ILUC (2)

Dynamic View on ILUC

• Future iLUC can become low
 – Dampening ILUC through REDD (if adequately financed)
 – Intensifying agricultural land use (baseline, tradeoffs!)
 – Better governing LUC in key countries (AR, BR, ID...)

• Prioritizing low-iLUC feedstocks
 – residues & wastes (2nd generation)
 – unused + degraded land (+ biodiversity/social safeguards)

• iLUC is no “fate”
C Balance of Forest Bioenergy

- Models give 10-20 years of payback time for forest residues = nearly carbon neutral
- Forest baseline (what happens if no bioenergy?) and fossil reference: influence of counterfactual
- Differentiation:
 - Type of forest biome (boreal, temperate, (sub)tropic)
 - Type of forest product (residues, thinnings, low- or high quality stemwood)
“C Debt“ from Forest Bioenergy?

<table>
<thead>
<tr>
<th>Woody biomass source for energy use</th>
<th>Time horizon for CO₂ emission reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>short (10 years)</td>
</tr>
<tr>
<td></td>
<td>Coal</td>
</tr>
<tr>
<td>Boreal forest, stems final harvest</td>
<td>---</td>
</tr>
<tr>
<td>Temperate forest, stems final harvest</td>
<td>---</td>
</tr>
<tr>
<td>Harvest residues, thinnings, landscape care & salvage wood*</td>
<td>+/-</td>
</tr>
<tr>
<td>SRC on marginal agricultural land</td>
<td>+++</td>
</tr>
<tr>
<td>SRC replacing forest</td>
<td>-</td>
</tr>
<tr>
<td>Industrial residues, wastes</td>
<td>+++</td>
</tr>
</tbody>
</table>

-; --; ---: **bioenergy system emits more** CO₂eq than reference fossil system **in given time frame**

+/-: GHG emissions of bioenergy and fossil are comparable **in given time frame**

+; ++; +++: **bioenergy system emits less** CO₂eq than reference fossil system **in given time frame**

* For harvest/thinning residues & salvage wood, balance depends on alternative use (burning) and decay rates

Source: own compilation based on JRC (2013)
Biomass: Cascading!?

Biomass crops

1st priority: food & (high-value) materials

Residues/wastes

End of cascade: energy use

Consistent with EU circular economy concept – but not as a criterion for certification, see IEA Bio (2016) Cascading of woody biomass: definitions, policies and effects on international trade.

A Matter of Scale: Biomass and Energy

Source: IINAS calculation for 2010 based on data from IEA and nova
Long-term Perspective

IEA Roadmap: Delivering Sustainable Bioenergy

- More climate change mitigation ($2 \rightarrow 1.5 \, ^\circ\text{C}$), more bioenergy (esp. BECCS)
- More activities to ensure sustainability of the bioeconomy, incl. food and materials
- Governance of a sustainable bioeconomy: SDGs
SDGs: The normative framework

from: https://sustainabledevelopment.un.org/sdgs
Medium-term Bioenergy Corridor?

IEA Roadmap: Delivering **Sustainable** Bioenergy

- Sustainable global bioenergy potential enough for IEA scenarios, but **role of BECCS remains disputed**
- To reduce risk of negative tradeoffs between SDGs, consider an “agreeable corridor“ of sustainable global bioenergy use until **2030**, e.g. 70 – 90 EJ (excluding BECCS)
Sustainable Bioeconomy: a Vision

Key role for biorefineries across sectors

- Sustainable food systems (protein, fibers etc. for food & feed; organic farming, agroforestry, aquaculture, balanced diets, reduced losses)
- Sustainable supply of bio-materials based on feedstocks from forestry, marginal/degraded land, re-use of biogenic residues/wastes
- Sustainable supply of bioenergy (agroforestry, intercropping, marginal/degraded land, biogenic residues and wastes)

- Global food security, secure land tenure
- Regional/local employment and value added (rural development)
- Sustainable production in agriculture, fishery and forestry
- Reduction of food losses, recycling of wastes (circularity)
- Conservation of ecosystem services (biodiversity, C sequestration, recreation, soil fertility, water...)
More Information

IEA Bioenergy Inter-task project “Measuring, governing and gaining support for sustainable bioenergy supply chains” http://itp-sustainable.ieabioenergy.com

[GBEP](https://www.globalbioenergy.org)
www.globalbioenergy.org

Contact: uf@iinas.org
www.iinas.org