

Der Kumulierte Energieaufwand (KEA) im Baubereich

- Anhang -

Arbeitspapier im Rahmen des UBA-F&E-Vorhabens Nr. 104 01 123:

Erarbeitung von Basisdaten zum Energieaufwand und der Umweltbelastung von energieintensiven Produkten und Dienstleistungen für Ökobilanzen und Öko-Audits

Bearbeitung:

Dr.-Ing. Wolfgang Jenseit, Öko-Institut (Institut für angewandte Ökologie e.V.)

Dr.-Ing. Thomas Lützkendorf, Bauhaus Universität Weimar

MSc Dipl.-Ing. Oliver Eiermann, Institut für Industrielle Bauproduktion (ifib)

Darmstadt/Karlsruhe/Weimar, Juni 1999

A-1 Anhang: Statistische Richtungssicherheit und Datenbasis-Vergleich

A-1.1 Allgemeines

Zusätzlich zum Vergleich der mit GEMIS-Daten berechneten und bewerteten Gebäude wurden die zugrundeliegenden Baustoff- und Elementkataloge statistisch untersucht. Weiterhin wurden die gleichen Kataloge mit ECOINVENT-Daten berechnet und die Ergebnisse mit den Ergebnissen aus den GEMIS-basierten Katalogen verglichen.

A-1.2 Verfahren

Zur Untersuchung von großen Datenmengen wurden verschiedene statistische Hilfsmittel angewendet, die kurz erläutert werden sollen.

A-1.3 Mittelwert und Standardabweichung

In einer Stichprobe $\{x_1, x_2, ..., x_n\}$ mit dem Umfang der Stichprobe n ist der Mittelwert \overline{x} als

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{1}$$

definiert. Die Standardabweichung s ist definiert als

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$
 (2)

A-1.4 Median

Der Median ist die Zahl, die in der Mitte einer Zahlenreihe liegt, d.h. die eine Hälfte der Werte ist kleiner als der Median, die andere Hälfte der Werte ist größer als der Median. Mittels des Medians lässt sich beurteilen, ob eine Stichprobe eher symmetrisch oder schief verteilt ist.

A-1.5 Korrelationskoeffizient

Bei einer zweidimensionalen Stichprobe $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$ mit dem beiden Größen X und Y lässt sich die Frage nach einem linearen Zusammenhang zwischen X und Y stellen. Der Korrelationskoeffizient Y (auch Bravais-Pearson-Korrelation oder auch Produkt-Moment-Korrelation genannt) wird als Maß des Grads des linearen Zusammenhangs verwendet. Der Korrelationskoeffizient Y ist definiert als

$$r = \frac{n \cdot \sum (x_i \cdot y_i) - \sum x_i \cdot \sum y_i}{\sqrt{(n \cdot \sum x_i^2 - (\sum x_i)^2) \cdot (n \cdot \sum y_i^2 - (\sum y_i)^2)}} (3)$$

Durch einen Wert im Intervall [+1; -1] wird der Grad des linearen Zusammenhangs zwischen den beiden Größen beschrieben. Bei der Berechnung des Korrelationskoeffizienten ist zu beachten, dass die Standardabweichung keiner der beiden Größen X und Y gleich Null werden darf. Von Korrelation sollte nur gesprochen werden, wenn der Korrelationskoeffizient im Intervall [0,5; 1] oder [-1; -0,5] liegt, da bei einem Wert außerhalb dieser Intervalle der gesuchte Zusammenhang nicht unbedingt existiert.

A-1.6 Baustoffkataloge

Es wurden zur Ermittlung der Richtungssicherheit die oben genannten statistischen Untersuchungen vorgenommen. Der auf GEMIS basierende Baustoffkatalog wurde auf Abhängigkeiten zwischen den Wirkungskategorien untersucht. Dabei war das Verhalten der Wirkungskategorie KEA von besonderem Interesse. Es ergaben sich insgesamt 137 signifikante Einträge im Baustoffkatalog.

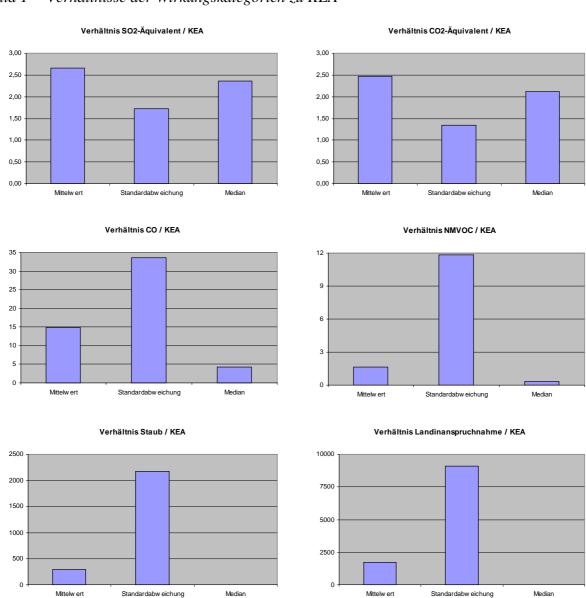
In der Tabelle unten sind die Korrelationskoeffizienten der Wirkungskategorien aus GEMIS mit KEA aufgeführt.

Tabelle T	Korrelationsfaktoren de	r Wirkungskategorien mit KEA

Wirkungskategorie	Korrelationskoeffizient mit KEA
KEA	1,00000
SO ₂ -Äquivalent	0,90460
CO ₂ -Äquivalent	0,95927
СО	0,77739
NMVOC	0,08489
Staub	0,81890
Landinanspruchnahme	-0,03255
Erze	0,11285
Mineralien	-0,03924

Aufgrund der sehr hohen Werte des Korrelationskoeffizienten für die beiden Wirkungskategorien "SO₂-Äquivalent" und "CO₂-Äquivalent" und dem relativ hohen Wert für die Wirkungskategorien "CO" und "Staub" scheint ein linearer Zusammenhang zwischen den Daten aus GEMIS für die vier genannten Wirkungskategorien und dem KEA zu bestehen.

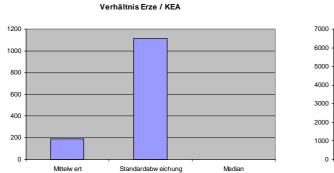
Als Probe wurde für jeden Baustoff das Verhältnis jeder Wirkungskategorie aus GEMIS zur Wirkungskategorie "KEA" gebildet.

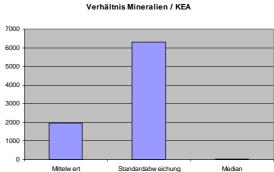

Die Abbildung auf der nächsten Seite zeigt Mittelwert, Standardabweichung und Median für jedes Verhältnis.

Auch hier lässt sich erkennen, dass zwischen den Wirkungskategorien "SO₂-Äquivalent" und "CO₂-Äquivalent" und der Wirkungskategorie "KEA" ein Zusammenhang besteht, da der Mittelwert ungefähr dem Median entspricht und die Standardabweichung im Vergleich zu den Verhältnissen der anderen Wirkungskategorien nicht übermäßig groß ist.

Die Wirkungskategorie "CO" zeigt eine schiefe Verteilung, da der Median nur einem Drittel des Mittelwerts entspricht und die Standardabweichung sehr hoch ist. Für die Wirkungskategorie "Staub", die ebenfalls einen guten Korrelationskoeffizienten aufweist, ist die Standardabweichung um den Faktor sieben größer als der Mittelwert und extrem schief verteilt (Median 3,99). Für diese beiden Wirkungskategorien scheint trotz günstigem Korrelationskoeffizienten kein linearer Zusammenhang zu bestehen.

Weitere Zusammenhänge zwischen den anderen Wirkungskategorien und KEA scheinen nicht zu existieren, dafür sprechen die kleinen Korrelationskoeffizienten bzw. die sehr hohe Standardabweichung. Insbesondere das Verhältnis Landinanspruchnahme/KEA zeigt extreme Bandbreiten. Dies lässt sich durch den extremen Landverbrauch und lange Brachen in der Forstwirtschaft erklären. Dadurch sind nicht nur Holzbaustoffe betroffen, sondern auch beispielsweise Papiererzeugnisse, die nicht aus Altpapier hergestellt werden.


Bild 1 Verhältnisse der Wirkungskategorien zu KEA



PEB nicht erneuerbar

Treibhauspotential

Versauerung

Zur Überprüfung, ob diese Zusammenhänge auch ursächlich bestehen, wurde ein weiterer Baustoffkatalog untersucht. Dieser Baustoffkatalog wurde *nicht mit GEMIS* als Datengrundlage, sondern mit den Ökoinventaren von Energiesystemen [ESU1996] und den Baustoffdaten-Ökoinventare [BST1995] berechnet.

Die Wirkungskategorien in diesem Katalog sind die CML-Kriterien [HEI1992]. Um zu untersuchen, ob ein analoger Zusammenhang wie zwischen "SO₂-Äquivalent" bzw. "CO₂-Äquivalent" und dem KEA in GEMIS existiert wurden die Wirkungskategorien "Versauerung" und "Treibhauspotential" als ähnliche Kriterien herangezogen.

Da bei [BST1995] zwischen erneuerbarem und nicht erneuerbarem Primärenergiebedarf unterschieden wird, wurden diese beiden Werte zu einem Wert "Primärenergiebedarf gesamt" (PEB gesamt) addiert, der mit dem KEA näherungsweise vergleichbar ist.

Bild 15 zeigt die Korrelationskoeffizienten der ausgewählten Wirkungskategorien nach [HEI1992] mit den Wirkungskategorien "PEB gesamt", "PEB erneuerbar" und "PEB nicht erneuerbar".

Wirkungskategorie	Korrelationskoeffizient mit							
	PEB gesamt	PEB erneuerbar	PEB nicht erneuerbar					
PEB gesamt	1,00000	0,99843	1,00000					
PEB erneuerbar	0 99843	1 00000	0 99829					

1,00000

-0,00088

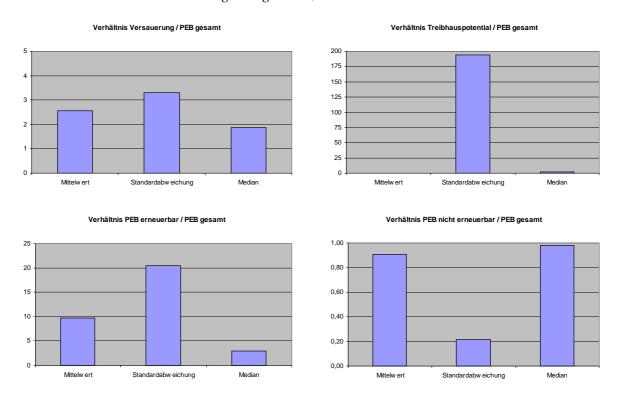
-0,00415

Tabelle 2 Korrelationsfaktoren der Wirkungskategorien mit Primärenergiebedarf (PEB)

Bei dieser Betrachtungsweise fällt auf, dass der Zusammenhang zwischen einem Primärenergiebedarf gesamt und den beiden emissionsorientierten Wirkungskategorien "Versauerung" und "Treibhauspotential", d. h. "SO₂-Äquivalent" bzw. "CO₂-Äquivalent" nicht gesichert existiert.

0,99829

0,00345


0,00624

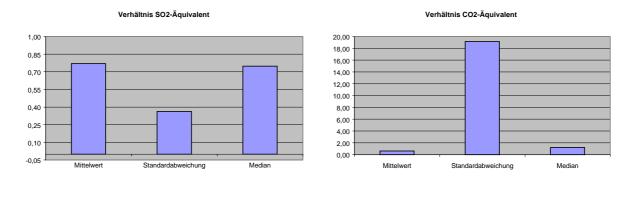
1,00000

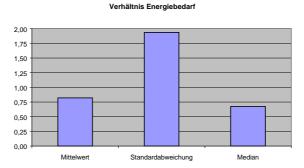
-0,00107

-0,00459

Bild 2 Verhältnisse der Wirkungskategorien zu PEB

Auch die Untersuchung von Mittelwert, Standardabweichung und Median der normierten Verhältnisse der Werte der Wirkungskategorien zu "PEB gesamt" liefert keinen Hinweis auf einen Zusammenhang zwischen oben genannten Kriterien, wie aus Bild 16 ersichtlich ist.


Diese Abweichungen zur Datenbasis GEMIS lässt sich durch andere Systemgrenzen erklären. Die Annahme, dass KEA und PEB gesamt vergleichbare Kriterien sind, stimmt nicht¹.

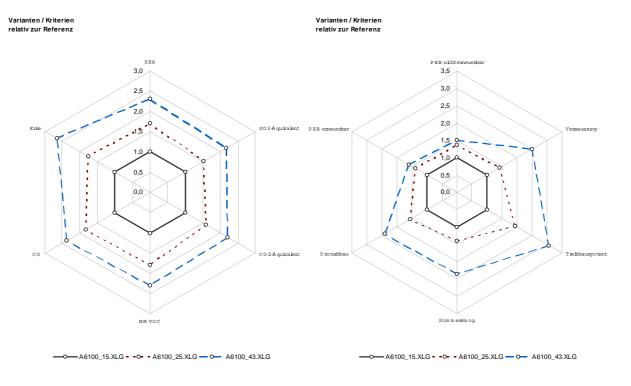

A-1.7 Elementkataloge

Um die Richtungssicherheit der Wirkungskategorie KEA in bezug auf andere Wirkungskategorien zu untersuchen wurden zwei Elementkataloge, welche die gleichen Elemente enthalten, jedoch mit den zwei oben genannten, entsprechend unterschiedlichen Baustoffkatalogen berechnet wurden, miteinander verglichen.

Siehe diese Projekt: KEA Methodik.

Bild 3 Wirkungskategorien der Elemente auf GEMIS- und ECOINVENT-Basis

Beim Vergleich der Verhältnisse der Werte der Wirkungskategorien der Elemente aus der auf GEMIS bzw. ECOINVENT basierenden Kataloge lässt sich eine Ähnlichkeit zwischen den Wirkungskategorien "Versauerung" aus ECOINVENT und "SO₂-Äquivalent" aus GEMIS erkennen. Zwischen den Wirkungskategorien "Treibhauspotential" und "CO₂-Äquivalent" bzw. "Primärenergiebedarf" und "KEA" ist die Standardabweichung zu hoch, um von einer Ähnlichkeit zu sprechen.


A-1.8 Gebäude

Es wurden für die gleichen Gebäude aus der Nutzungsart Wohnen mit auf ECOINVENT basierenden Elementkatalog verschiedene Wirkungskategorien ermittelt

Im folgenden werden die Ergebnisse der Berechnungen sowohl als Übersicht, als auch in tabellarischer Form dargelegt und anschließend kommentiert.

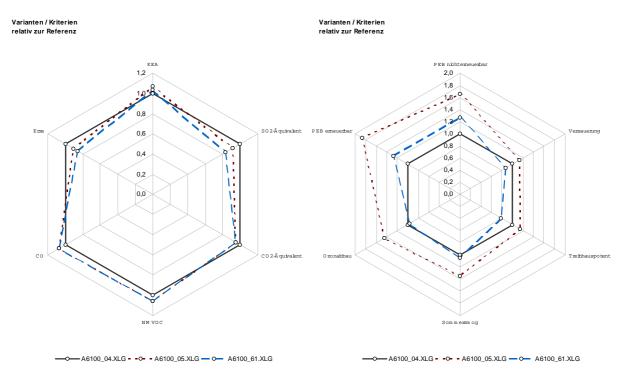
A-1.8.1 Ergebnisse Szenario "Einfamilienwohnhaus"

Bild 4 Vergleich Szenario "Einfamilienwohnhaus"

GEMIS basiert

ECOINVENT basiert

Tabelle 3 Szenario "Einfamilienwohnhaus" (GEMIS basiert)


		KEA	SO ₂ -	CO ₂ -	NMVOC	CO	Erze
			Äquivalent	Äquivalent			
		normiert	normiert	normiert	normiert	normiert	normiert
6.1.0.0-15	Gebäude total	1,000	1,000	1,000	1,000	1,000	1,000
	Fassade	1,000	1,000	1,000	1,000	1,000	1,000
	Öffnungen	1,000	1,000	1,000	1,000	1,000	1,000
	Innenwände	1,000	1,000	1,000	1,000	1,000	1,000
	Decken/Böden	1,000	1,000	1,000	1,000	1,000	1,000
	Dächer	1,000	1,000	1,000	1,000	1,000	1,000
	Technik	1,000	1,000	1,000	1,000	1,000	1,000
	Ergänzd. Lst.	1,000	1,000	1,000	1,000	1,000	1,000
6.1.0.0-25	Gebäude total	1,696	1,522	1,586	1,786	1,818	1,765
	Fassade	1,739	2,118	2,394	1,262	6,000	2,778
	Öffnungen	1,900	1,641	1,860	1,095	2,133	3,615
	Innenwände	0,837	1,279	1,400	1,828	3,919	12,338
	Decken/Böden	0,921	0,926	0,909	1,040	1,026	1,063
	Dächer	1,150	1,100	1,400	3,733	0,818	4,839
	Technik	1,158	1,034	1,000	1,393	0,933	1,091
	Ergänzd. Lst.	1,714	2,150	4,250	1,714	1,800	428,571
6.1.0.0-43	Gebäude total	2,304	2,174	2,207	2,286	2,364	2,647
	Fassade	2,174	2,000	2,113	0,951	2,214	2,111
	Öffnungen	0,860	0,795	0,814	0,905	0,778	0,715
	Innenwände	3,721	6,279	5,143	18,966	8,514	9,481
	Decken/Böden	0,978	1,000	1,000	1,280	1,077	0,906
	Dächer	3,000	2,200	2,433	7,333	1,727	20,000
	Technik	0,684	0,724	0,633	0,714	0,447	2,318
	Ergänzd. Lst.	2,286	3,050	6,875	2,286	2,400	325,000

 $Tabelle\ 4\ Szenario\ "Einfamilienwohnhaus"\ (ECOINVENT\ basiert)$

	_						
		PEB nicht erneuerbar	Versauerun	Treibhaus- potential	Sommersmo g	Ozonabbau	PEB erneuerbar
		normiert	normiert	normiert	normiert	normiert	normiert
6.1.0.0-15	Gebäude total	1,000	1,000	1,000	1,000	1,000	1,000
	Fassade	1,000	1,000	1,000	1,000	1,000	1,000
	Öffnungen	1,000	1,000	1,000	1,000	1,000	1,000
	Innenwände	1,000	1,000	1,000	1,000	1,000	1,000
	Decken/Böden	1,000	1,000	1,000	1,000	1,000	1,000
	Dächer	1,000	1,000	1,000	1,000	1,000	1,000
	Technik	1,000	1,000	1,000	1,000	1,000	1,000
	Ergänzd. Lst.	1,000	1,000	1,000	1,000	1,000	1,000
6.1.0.0-25	Gebäude total	1,371	1,417	1,941	1,412	1,556	1,380
	Fassade	1,948	2,444	3,158	2,682	3,038	1,800
	Öffnungen	0,977	1,043	13,978	1,236	1,884	0,306
	Innenwände	1,293	0,440	0,489	0,500	0,611	1,282
	Decken/Böden	1,267	1,125	1,364	1,667	1,447	1,286
	Dächer	1,270	1,667	-2,091	0,680	1,040	1,294
	Technik	0,940	1,000	1,000	1,273	1,143	0,957
	Ergänzd. Lst.	2,077	2,294	2,952	2,000	2,063	3,120
6.1.0.0-43	Gebäude total	1,514	2,500	3,059	2,353	2,389	1,600
	Fassade	1,558	4,611	5,000	5,000	4,231	1,533
	Öffnungen	0,682	0,623	3,441	0,663	0,884	0,750
	Innenwände	2,341	1,840	2,340	1,548	1,806	2,394
	Decken/Böden	1,333	1,219	1,273	1,818	1,605	1,286
	Dächer	1,486	4,600	-5,455	2,760	3,960	1,529

A-1.8.2 Ergebnisse Szenario "Mehrfamilienwohnhaus"

Bild 5 Vergleich Szenario "Mehrfamilienwohnhaus"

GEMIS basiert

ECOINVENT basiert

Tabelle 5 Szenario "Mehrfamilienwohnhaus" (GEMIS basiert)

	J		,		,		
		KEA	SO ₂ -	CO ₂ -	NMVOC	CO	Erze
			Äquivalent	Äquivalent			
		normiert	normiert	normiert	normiert	normiert	normiert
6.1.0.0-04	Gebäude total	1,000	1,000	1,000	1,000	1,000	1,000
	Fassade	1,000	1,000	1,000	1,000	1,000	1,000
	Öffnungen	1,000	1,000	1,000	1,000	1,000	1,000
	Innenwände	1,000	1,000	1,000	1,000	1,000	1,000
	Decken/Böden	1,000	1,000	1,000	1,000	1,000	1,000
	Dächer	1,000	1,000	1,000	1,000	1,000	1,000
	Technik	1,000	1,000	1,000	1,000	1,000	1,000
	Ergänzd. Lst.	1,000	1,000	1,000	1,000	1,000	1,000
6.1.0.0-05	Gebäude total	1,071	0,917	0,946	1,059	1,071	0,900
	Fassade	0,773	0,533	0,716	0,486	0,618	0,363
	Öffnungen	1,385	1,000	1,167	2,333	1,292	2,933
	Innenwände	0,966	0,750	0,771	44,286	1,241	0,140
	Decken/Böden	1,400	1,233	1,167	2,556	1,214	1,149
	Dächer	0,788	0,851	0,771	0,973	0,875	0,633
	Technik	1,750	1,500	1,600	2,375	1,727	1,583
	Ergänzd. Lst.	1,083	1,077	1,133	1,125	1,083	1,026
6.1.0.0-61	Gebäude total	1,036	0,833	0,946	1,059	1,071	0,855
0.1.0.0 01	Fassade	0,546	0,367	0,516	0,622	0,294	0,219
	Öffnungen	0,531	0,509	0,475	1,067	0,385	0,160
	Innenwände	0,898	0,938	0,957	1,286	1,655	1,400
	Decken/Böden	1,400	1,400	1,500	1,444	0,929	1,043
	Dächer	0,385	0,457	0,457	0,181	0,444	0,014
	Technik	1,167	1,053	1,100	1,417	1,000	1,083
		-	0,962	0,600	1,063	1,000	1,842
	Ergänzd. Lst.	1,083	0,902	0,000	1,003	1,083	1,042

Tabelle 6 Szenario "Mehrfamilienwohnhaus" (ECOINVENT basiert)

•	3		,		,		
		PEB nicht erneuerbar	Versauerun g	Treibhaus- potential	Sommersmo g	Ozonabbau	PEB erneuerbar
		normiert	normiert	normiert	normiert	normiert	normiert
6.1.0.0-04	Gebäude total	1,000	1,000	1,000	1,000	1,000	1,000
	Fassade	1,000	1,000	1,000	1,000	1,000	1,000
	Öffnungen	1,000	1,000	1,000	1,000	1,000	1,000
	Innenwände	1,000	1,000	1,000	1,000	1,000	1,000
	Decken/Böden	1,000	1,000	1,000	1,000	1,000	1,000
	Dächer	1,000	1,000	1,000	1,000	1,000	1,000
	Technik	1,000	1,000	1,000	1,000	1,000	1,000
	Ergänzd. Lst.	1,000	1,000	1,000	1,000	1,000	1,000
6.1.0.0-05	Gebäude total	1,654	1,125	1,143	1,350	1,435	1,865
	Fassade	1,241	0,553	0,659	0,769	1,036	1,182
	Öffnungen	0,778	1,600	0,983	0,745	1,898	0,579
	Innenwände	1,833	1,095	1,163	1,400	1,625	1,918
	Decken/Böden	2,676	2,133	1,930	2,632	2,750	2,538
	Dächer	1,267	0,957	0,962	0,889	0,805	1,275
	Technik	0,706	1,357	1,500	1,485	1,205	1,143
	Ergänzd. Lst.	1,615	1,125	1,108	1,100	1,114	3,615
6.1.0.0-61	Gebäude total	1,269	0,875	0,786	1,050	0,957	1,270
	Fassade	0,776	0,660	0,659	0,750	0,643	0,773
	Öffnungen	1,611	0,800	-0,293	0,909	0,918	2,842
	Innenwände	1,214	0,810	0,673	0,867	0,800	0,890
	Decken/Böden	1,549	1,600	1,754	2,026	1,975	1,615
	Dächer	1,600	0,361	-0,096	0,444	0,366	1,594
	Technik	0,824	0,914	0,917	0,970	0,952	0,929
	Ergänzd. Lst.	1,462	0,917	0,459	0,975	0,932	2,923

A-1.9 Kommentar der Ergebnisse

Aus den vorstehenden Abbildungen und Tabellen ist unzweifelhaft zu erkennen, dass die Ergebnisse aus beiden Katalogen zwar voneinander abweichen, jedoch abgesehen von der Variante 6.1.0.0-4 in vergleichbaren Wirkungskategorien (Energie, CO₂, SO₂, Ozonschädigung) die gleiche Rangfolge aufweisen.

Auch hier ist durch den Vergleich nur ein Trend erkennbar. Es scheint, als ob sich einige Abweichungen, die auf Baustoff- oder Elementebene noch sichtbar sind, auf Gebäudeebene nicht mehr zu erkennen sind.

Um einen solchen Effekt zu lokalisieren, wäre es notwendig, einzelne Elemente bis auf Baustoffebene gezielt aufzuschlüsseln. Ein solcher Baustoffmassenauszug ermöglicht das Nachvollziehen der maßgebenden Stoffströme und damit auch der signifikanten Umweltbelastungen.

A-1.10 Literatur

[BST1995]	HAB Weimar / ifib / ETHZ-LES : Baustoffdaten - Okoinventare. ifib, Karlsruhe,
	1995

[ESU1996] ETH Zürich Gruppe Energie-Stoffe-Umwelt (ESU) (Hrsg.): Ökoinventare von Energiesystemen, 3. Auflage, 1996, CDROM

[HEI1992] Heijungs, Guinee, Huppes, et. al.: Environmental Life Cycle Assessment of Products. Leiden, 1992

A-2 Materialien: KEA-Anwendungen im Baubereich - ausgewählte Beispiele aus der Literatur

Nachstehend werden Anwendungsmöglichkeiten und -fälle für den Kennwert "Kumulierter Energieaufwand" im Baubereich auf der Basis ausgewählter Beispiele aus der Literatur dargestellt.

Die Auswahl ist dabei weder vollständig noch repräsentativ. Die Aufnahme in die Übersicht ist nicht automatisch mit einer Anerkennung von Daten und/oder Aussagen verbunden, sondern dient hier ausschließlich der Illustration.

Es soll aufgezeigt werden, dass bereits in der jüngeren Vergangenheit und der Gegenwart Werte zum Kumulierten Energieaufwand für die Darstellung und Bewertung von Sachverhalten im Baubereich auf unterschiedlichen Ebenen (Bauprodukte, Bauteile, Bauwerke, Gebäudebestände) und im Rahmen spezifischer Fragestellungen eingesetzt werden.

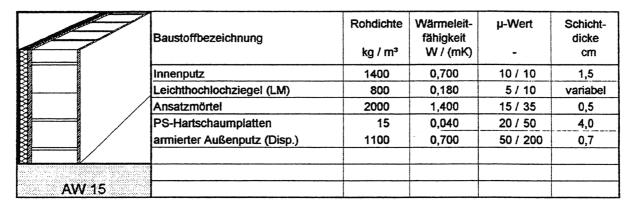
Bauteilkatalog des IFB Hannover

Der auf der nächsten Seite dargestellte Bauteilkatalog enthält Angaben zum Schichtenaufbau (Materialart/Schichtdicke) und zu resultierenden technischen Eigenschaften komplexer Bauteile (Elemente) – hier dargestellt für Außenwände. Die Angabe des k-Wertes, des Tauwasserverhaltens, der schalldämmenden Wirkung, der Feuerwiderstandsklasse und der Gesamtdicke ermöglicht zunächst die Vorauswahl einer "technisch zulässigen" Lösung. Im Rahmen einer ökonomisch/ökologischen Bewertung und als Grundlage für die Auswahl der Lösung erfolgt neben der Angabe eines Richtpreises eine Aussage zum Primärenergieinhalt des Bauteils infolge Produktion der Baustoffe und Herstellung der Konstruktion.

Der Primärenergieinhalt wird als gleichberechtigtes Bewertungskriterium neben technischen und monetären Größen verwendet.

Quelle:

Institut für Bauforschung e.V.: Der Primärenergieinhalt der Baukonstruktionen unter gleichzeitiger Berücksichtung der wesentlichen Baustoffeigenschaften und der Herstellungskosten, Bauforschungsberichte F 2249, IRP Verlag 11/1993

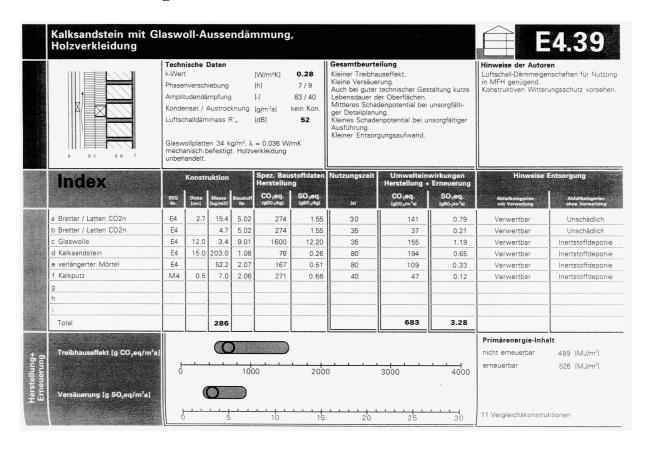


Bauteilkatalog Primärenergieinhalt

PEI

Außenwände

AW 15 / AW 16



Bauteileigenschaften		Dicke (17,5	ies Mauerwerl 24,0	ks in cm 30,0
Wärmedurchgangskoeffizient k	W / (m²K)	0,459	0,394	0,348
Tauwasserverhalten		0	0	0
Bewertetes Schalldämm-Maß R'w	dB	~ 38	~ 41	~ 43
Feuerwiderstandsklasse		> F 90	> F 90	> F 90
Primärenergieinhalt	kWh/m²	109	141	170
Richtpreis (Kostenstand Nov. '93)	DM / m²	245	285	310
Gesamtdicke	cm	24,2	30,7	36,7

	Baustoffbezeichnung	Rohdichte kg / m³	Wärmeleit- fähigkeit W / (mK)	μ-Wert -	Schicht- dicke cm
	Innenputz	1400	0,700	10 / 10	1,5
	KS-Lochsteine	1400	0,700	5 / 10	variabel
	Ansatzmörtel	2000	1,400	15 / 35	0,5
	Mineralfaserdämmstoff	85	0,040	1/1	6,0
	armierter Außenputz (Disp.)	1100	0,700	50 / 200	0,7
AW 16					

Bauteileigenschaften	ten Dicke des Mauerwerks 17,5 24,0			
Wärmedurchgangskoeffizient k	W / (m²K)	0,512	0,488	0,469
Tauwasserverhalten		0	0	0
Bewertetes Schalldämm-Maß R'w	dB	~ 44	~ 47	~ 49
Feuerwiderstandsklasse		> F 90	> F 90	> F 90
Primärenergieinhalt	kWh / m²	93	115	135
Richtpreis (Kostenstand Nov. '93)	DM / m²	255	280	295
Gesamtdicke	cm	26,2	32,7	38,7

SIA-Elementkatalog D 0123

Dargestellt wird ein Auszug aus einem Element-Katalig des SIA. Dargestellt wird der Schichtenaufbau in Wort und Bild.

Für eine Beurteilung aus bautechnischer Sicht und eine Vorauswahl geeigneter Konstruktionen werden technische Daten (u.a. k-Wert, luftschalldämmende Wirkung und Tauwasserverhalten) angegeben. Hauptkriterien für die ökologische Bewertung sind der Treibhauseffekt (CO₂-Äquivalent) und Versauerungspotential (SO₂-Äquivalent).

Neben der Produktion der Baustoffe und der Herstellung des Bauteils wird bei der ökologischen Bewertung die Instandhaltung während der Nutzung vor dem Hintergrund eines gewählten Betrachtungszeitraums bzw. einer angenommenen Lebensdauer berücksichtigt. Hinweise für die spätere Entsorgung erfolgen verbal.

Die ökologische Bewertung wird ergänzt durch Angaben zum Primärenergie-Inhalt (vergegenständlichter Energieaufwand). Dieser Wert wird getrennt für einen Anteil Energie aus nicht erneuerbaren Quellen und Energie aus erneuerbaren (regenerativen) Quellen dargestellt.

Quelle:

SIA Dokumentation D0123 – Hochbaukonstruktionen nach ökologischen Gesichtspunkten, SIA, Zürich 9/1995

Primärenergieaufwand für Solarkollektoren

Baugruppe	Bauteil	Menge/Maße			Material	menge ges	amt (kg)			
			EPDM/ Gummi	Stahl	Aluminium	Kupfer (Blech)	Glas	PU	GFK	
materialspezifischer Pr	rimärenergieaufwand (MJ/kg)		94.0	26.7	260.2	95.0	14.0	90.7	43.0	
Kollektor 3 x 1,92m²	Rahmen	3							22.80	
	Absorber	3				26.40				
	Wärmedämmung	3						7.20		
	Abdeckung	3					42.00			
	Dichtungen	6	1.50							
	Kaschierung um Wärmedäm.	6			2.20					
Zwischensumme Materia			. 1.50	0.00	2.20	26.40	42.00	7.20	22.80	Zwischensumme (MJ)
Zwischensumme PE- Au			141.00	0.00	572.44	2508.00	588.00	653.04	980.40	5442.88
Rohranschlüsse	Verbindungsschläuche	4	0.05							
	Schlauchschellen	6		0.03						
Kollektorbefestigung	Dachhalter 80x10x2	9		0.11						
, , , , , , , , , , , , , , , , , , , ,	Profilschiene 2000x20x1,5	6		2.84						
	Profilschiene 2300x20x1,5	6		3.27						
	Einschubwinkel 30x10x1	12		0.03						
	Schrauben + Kleinteile	45		0.88						
Zwischensumme Materia	almenge		0.05	7.16		0.00	0.00	0.00	0.00	Zwischensumme (MJ)
Zwischensumme PE- Au			4.70	191.17	0.00	0.00	0.00	0.00	0.00	195.87

Baugruppe	Bauteil	Menge/Maße	Materialmenge gesamt (kg)						
			EPDM/ Gummi	Polyamid	Stahl	Kupfer (Blech)	Kupfer (Rohr)	Glas	
materialspezifischer Primärenergieaufwand (MJ/kg)		94.0	170.0	26.7	95.0	49.0	14.0		
Kollektorröhren	Absorber	50				4.56			
	Außenhülle	50						66.15	
	Anschlüsse	100			17.87		0.12		
	Dichtungen	50	0.84				0.12		
	Verschraubung	50		0.57					
Zwischensumme Mat			0.84	0.57	17.87	4.56	0.12	66.15	Zwischensumme (MJ
Zwischensumme PE-	Aufwand		78.96	96.90	477.13	433.20	5.88	926.10	2018.17
Wärmetauscher	Gehäuse + Schrauben	2 + Diverses			17.00				
" ar metauscher	Stutzen	50		0.62	1.33				
	Ventil	30		0.02	0.04				
	Anschlußstücke	100		0.09	0.04		0.37		
	Dichtungen	100	0.46				0.37		
	Beschichtung	100	0.46	0.08					
Zwischensumme Mate		4	0.46	0.08	18.37	0.00	0.37	0.00	7
Zwischensumme PE-		+	43.24	134.30	490.48	0.00		0.00	Zwischensumme (MJ
Zwischensumme FE- /	чиј жапа		43.24	134.30	490.48	0.00	18.13	0.00	686.15
Rohranschlüsse	Verbindungsschläuche	0,1m; d=22; 2			0.33	T			
	Klemmringe	4			0.06				
Kollektorbefestigung	Mehrfachwinkel 900x40x1	8			2.28				
	Schrauben M6x40	48			1.28				
	Muttern M6 + Kleinteile	12 + Diverses			0.14				
	Halteschiene 1800x50x1	4			2.84				
	Halteschiene 2000x60x1	2			1.90				
	Gummiauflage 40x40x2,5	50	0.73						
	Klammern 200x10x0,5	50			0.50				
Zwischensumme Mate	rialmenge	1	0.73	0.00	9.33	0.00	0.00	0.00	Zwischensumme (MJ)
Zwischensumme PE- Aufwand		68.62	0.00	249.11	0.00	0.00	0.00	317.73	

Dargestellt wird die Ermittlung des in komplexen Systemen (hier von Kollektorflächen zur solaren Brauchwassererwärmung) infolge Herstellung und Verwendung von Materialien vergegenständlichten Energieaufwandes – gemessen in Primärenergie. Die Art der Darstellung erlaubt zusätzlich eine Analyse des Beitrages einzelner Materialien und Komponenten zum Gesamtaufwand. Neben der Darstellung eines Gesamtaufwandes eignen sich Kennwerte zum kumulierten Energieaufwand auch zu Teilaussagen im Rahmen einer möglichen Konstruktionsoptimierung.

Quelle: Ladener, H.: Solaranlagen – Planung, Bau & Selbstbau, ökobuch Verlag, Staufen 1993

Testbericht zu Solaranlagen

			Elco-Klöckner Astron 30/ Vistron 300 ERRF Öko-Plus	Solatherm Mazdon 30	Prinz-Solar Lux 2000/Bisol 300	Ritter- Paradigma SolarPaket 500 TiNOX	Solar Diamant Diamant W2-FS	Solvis F50/Vacutherm Plu VT 301
Anzahl der Kollektoren/Bauart		1 Heat-Pipe-Vaku- umröhrenkollektor	1 Heat-Pipe-Vaku- umröhrenkollektor	3 direktdurch- strömte Vakuumröh- renkollektoren	1 Flachkollektor, variabler Durchfluß im Kollektorkreis- lauf	2 Flachkollektoren, variabler Durchfluß im Kollektorkreis- lauf ¹)	1 Flachkollektor	
Koll	ektortyp		Astron 30	Mazdon 30	Lux 2000	Solar 500 TiNOX	Diamant SKS 2.0	F 50
Brut	ttofläche in m 2 /Länge $ imes$ Breite eines Moduls in m	ca.	4,2/2,13 × 1,96	4,5/2,04 × 2,21	4,6/2,12 × 0,72	5,4/3,29 × 1,63	4,8/2,12 × 1,13	5,5/3,81 × 1,45
Stah	nlstandspeicher		Vistron 300 ERRF Öko Plus	Sunbag 300	Bisol 300	SUN 300	THS 350/2 ⁴)	Vacutherm-Plus VT 30
Höh	e × Durchmesser in m ca. (Transportmaß)		1,75 × 0,58	$1,78 \times 0,67$	1,35 × 0,7	1,35 × 0,7	1,73 × 0,55	1,79 × 0,67
Nut	zbares Speichervolumen in I (gemessen)		267	275	314	303	314	295
Pum	pen- und Sicherheitsgruppe		Hydron Sol	integriert	PS 10K	STR 1	DBS 2.0	VT-SIE 2
Reg	ler		Logon Sol	SMT 400	RET 10	MES Solar	DBS 2.0/5	SI-Control
Reg	elung von/Reglerausstattung		Kollektorkreislauf, Nachheizung und der Zirkulation; Zeitbegrenzung für Nachheizung und Zirkulation	Kollektorkreislauf, Nachheizung und der Zirkulation; Zeitbegrenzung für Nachheizung und Zirkulation ⁵)	Kollektorkreislauf und Nachheizung; Betriebsstunden- zähler für Kollek- torkreispumpe	Kollektorkreislauf; Wärmemengener- fassung; Anzeige der Kollektorlei- stung	Kollektorkreislauf; Betriebsstunden- zähler für Kollek- torkreispumpe	Kollektorkreislauf, Nachheizung und Zirk lation; Zeitbegrenzung für Zirkulation; Pun pd drehzahlregelung mög lich
Preis	sspanne in DM ca.		11 430,- bis 12 870,-			6 950,- bis 7 150,-	9 000,- bis 10 500,-	
Mitti	lerer Preis ohne Installation in DM ca.		12 150,-	12 620,-	12 270,-	7 050,-	9 750,-	8 580,-
Mittlerer Preis mit Installation in DM ca.			15 950,-	16 090,-	16 070,	10 620,-	13 190,-	12 230,-
	-QUALITÄTSURTEIL		SEHR GUT	SEHR GUT	GUT	GUT	GUT	GUT
	GETISCHE BEURTEILUNG (EFFIZIENZ)	40%	sehr gut	sehr gut	sehr gut	gut	sehr gut	gut
	parung am jährl. Energiebedarf von 4 200 KWh in	% ca.	55,0	55,0	55,0	55,0	60,0	60,0
	same Gesamtfläche (Apertur) in m² ca.		3,2	3,2	3,3	5,0	4,3	5,0
	fort durch Warmwasserbevorratung in I ca.		111	158	172	176	119	146
	EBSVERHALTEN / VERARBEITUNG	20%	sehr gut	sehr gut	gut	zufriedenst.	gut	gut
	ELTEIGENSCHAFTEN	15%	gut	sehr gut	gut	gut	sehr gut	gut
-	getische Amortisationszeit in Jahren ca.		++ 1,4	++ 1,8	++ 1,5	+ + 1,7	++ 1,6	+ + 1,4
	tellung, Materialien und Verpackung		0	+			+	0
	RHEIT	10%	gut	gut	gut	gut	gut	gut
		15%	gut	gut	zufriedenst.	gut	zufriedenst.	gut
Mont	7		+	+	0	+	O ³)	+
	enung		0	++	0	+	0	0
Doku	mentation		+	+	0	+	0	+
Auffälligkeiten	Kollektor/Kollektorkreis		Begrenzung der Kollektoraustritts- temperatur	Begrenzung der Kollektoraustritts- temperatur		der Verarbeitung; leichter Beschlag nach Stillstand	Kollektor mit Ar- gon gefüllt, metri- sche Kollektoran- schlüsse; leichter Beschlag nach Stillstand¹)	
Auffäll	Speicher/Pumpen- und Sicherheitsgruppe			Bedienungskonsole und weitere Teile kompakt in Spei- cherdämmung			se und empfind-	Bedienungsele- mente am Speicher zu tief angebracht

Bewertungsschlüssel der Prüfergebnisse:

Die Beurteilung von Umwelteigenschaften erfolgt bei diesem Bericht von Stiftung Warentest zu Solaranlagen für Brauchwassererwärmung u.a. auf der Basis einer energetischen Amortisationszeit in Jahren. Dieser Wert drückt aus, in welcher Zeit ein "investierter" Aufwand an Primärenergie durch erzielte solare Gewinne wiedererwirtschaftet wird. Angaben zum Primärenergieaufwand für die Herstellung von Produkten und Systemen sowie die Bewertung einer "energetischen Amortisationszeit" werden im Rahmen der Verbraucherberatung eingesetzt und erreichen breite Kreise der Öffentlichkeit.

Quelle: Test Solaranlagen für Brauchwasser, test 3/98 der Stiftung Warentest, Berlin

^{++ =} sehr gut, + = gut, • = zufriedenstellend, - = mangelhaft, -- = sehr mangelhaft Prozentangaben = Gewichtungsanteil am test-Qualitätsurteil

pieter, Fosition des speichertemperaturruniers inzwische verändert. Sogenannte Drain-back-Technik kann höheren Montage-aufwand erfordern.

Vergleich von Solarmodulen

Bauarten	Monokristallin	Polykristallin	amorph
Herstellung	Einkristall	Polykristall	aufgedampft
Graue Energie in kWh/Wp	3,5–5,0	3,0-5,0	2,4-4.2
Lebensdauer	25 Jahre	25 Jahre	5–10 Jahre
Energierücklaufzeit (Mittelland)	3,5 Jahre	3,5 Jahre	2,5 Jahre
Erntefaktor	minimal 8	minimal 8	2–5
Modul-Wirkungsgrad in %	12–16%	10–12	4–6%
Garantie in Jahren auf +/- 10% Nennleistung*	10	10	unterschiedlich je nach Hersteller
Eignung für - Consumerproducts	nein	nein	ja
- kleine Inselanlagen	ja	ja	ja ja
- Grossanlagen	ja	ja	nein

^{*} einzelne Hersteller teilen die Solarzellen in Leistungsklassen ein und erreichen so bessere Garantiewerte (Solarex, BP).

Tab. 1.6: Kenngrössen der unterschiedlichen Modulbauarten

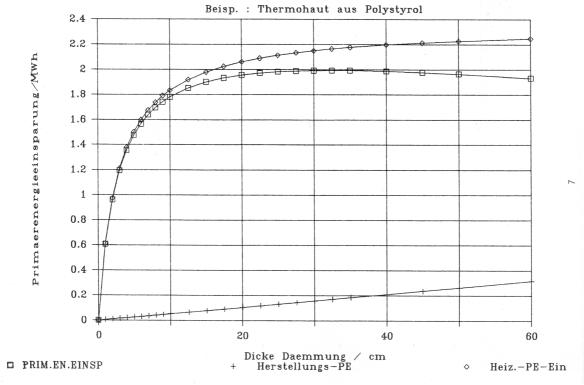
Dargestellt wird ein Vergleich von Solarmudulen unterschiedlicher Herstellungstechnologie und Einsatrzbereiche. Angegeben werden Daten zum Primärenergieaufwand für die Herstellung (in der Schweiz mit der Bezeichnung graue Energie), bezogen auf eine vergleichbare funktionelle Einheit. Die angegebene Energierücklaufzeit entspricht der energetischen Amortisationsdauer. Es wird deutlich, dass diese nur unter Annahme konkreter Randbedingungen für Nutzungsort und -art (hier Klima Schweiz – Mittelland) ermittelt werden kann. Vor dem Hintergrund von Annahmen zur Lebensdauer wird ein Erntefaktor ermittelt. Dieser gibt an, wie oft während der Lebensdauer sich das System primärenergetisch amortisiert. Hierdurch kann die Lebensdauer in die Bewertung einbezogen werden.

Mit den Kennwerten Energierücklaufzeit und energetischer Erntefaktor liegen spezifische Anwendungen von Primärenergiekennwerten vor, die insbesondere zur Beurteilung von Solaranlagen für die Stromerzeugung oder Warmwasserbereitung /Heizungsunterstützung eingesetzt werden.

Quelle: Photovoltaik – Planungsunterlagen für autonome und netzgekoppelte Anlagen, PACER –Programm des Bundesamts für Konjunkturfragen, Bern 1992

Vergleich von Dämmstoffen

Material	Dämmstoff- gewicht in kg/m³	Wärmeleit- fähigkeit in W/m und	Energieverbra für die Herstell von 1 m³ Däm	Dauer in Monaten, bis Energie zur	
		Kelvin	Insgesamt	davon nicht erneuerbar	Herstellung durch Einspa- rung kompen- siert ist
Polystyrol	15 – 30	0,035 - 0,040	530 – 1.050	530 – 1.050	7 - 20
Polyurethan	30 – 35	0,020 - 0,035	1.140 – 1.330	1.140 – 1.330	9 - 23
Mineralfaser	20 - 140	0,035 - 0,045	100 - 700	100 – 700	1,5 – 13
Blähperlite	90 – 100	0,050	210 - 235	210 - 235	3 – 4
Kokosfaser	75 - 85	0,045	365 - 405	95	1,5 - 2,0
Kork					
Dämmplatte	90 – 110	0,045	360 - 440	35 – 65	0,5 - 1,5
Natur-Schrot	65 - 85	0,042 - 0,046	270 - 380	10 – 40	0,1 - 0,5
Holzfaser-					
dämmplatte	190 – 240	0,045 - 0,053	1.510 – 1.705	590 - 785	8 - 16
Zellulose-					
Dämmstoff	40 - 70	0,045	110 - 190	10 - 17	0.1 - 0.3


Angegeben werden Dämmstoffe mit ihren bauphysikalischen Eigenschaften sowie dem Primärenergieaufwand für ihre Herstellung. Der Anteil von Energie aus nichterneuerbaren Quellen wird als Davonposition ausgewiesen. Eine Energierücklaufzeit (energetische Amortisationsdauer) stellt dar, in welchem Zeitraum der Energieaufwand für die Herstellung von Dämmstoffen durch Energieeinsparungen infolge der Dämmwirkung "amortisiert" wird. Hierfür notwendige Randbedingungen wurden in der Tabelle selbst nicht erwähnt. Es wird deutlich, dass die energetische Amortisationszeit im Bereich von Wochen bis max. 2 Jahren liegt, bei einer Wirksamkeit von 20 – 80 Jahren. Primärenergetische Betrachtungen zum Herstellungsaufwand und zur energetischen Amortisation spielen bei der allgemeinen Beurteilung von Dämm-Maßnahmen sowie bei der spezifischen Produktauswahl eine große Rolle. Sie werden auch im Bereich der Verbraucherberatung eingesetzt.

Quelle:

König: Wärmedämmung vom Keller bis zum Dach, Arbeitsgemeinschaft der Verbraucherverbände e.V. 3/1997, Bonn

Optimale Dämmstoffdicke

Im Rahmen einer graphischen Lösung wird eine optimale Dämmstoffdicke für ein ausgewähltes Produkt durch Nutzensbetrachtungen ermittelt. Dem mit zunehmender Schichtdicke anwachsenden Aufwand zur Herstellung wird der erzielbare Nutzen (hier die mögliche Primärenergieeinsparung infolge Dämmwirkung) gegenübergestellt. Als Bewertungsmaßstab wird die jeweils netto erzielbare Einsparung an Primärenergie verwendet. Typischerweise verläuft die Kurve im optimalen Bereich sehr flach und bietet so Raum für die Einbeziehung ergänzender Bewertungskriterien. Betrachtungen auf der Basis Primärenergie werden im Bauwesen zur Darstellung des einmaligen Herstellungsaufwandes und der resultierenden laufenden Einsparungen bei der Anwendung von Dämmstoffen verwendet und dienen der Konstruktionspotimierung.

Quelle:

W. Feist: Primärenergie- und Emissionsbilanzen von Dämmstoffen, Institut Wohnen und Umwelt (IWU), Darmstadt 6/1986

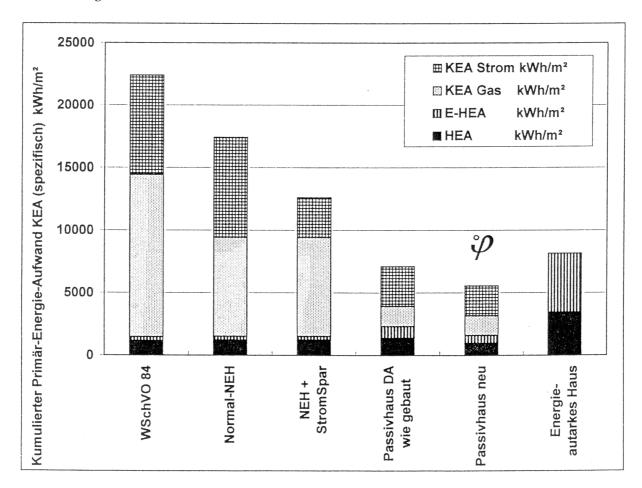
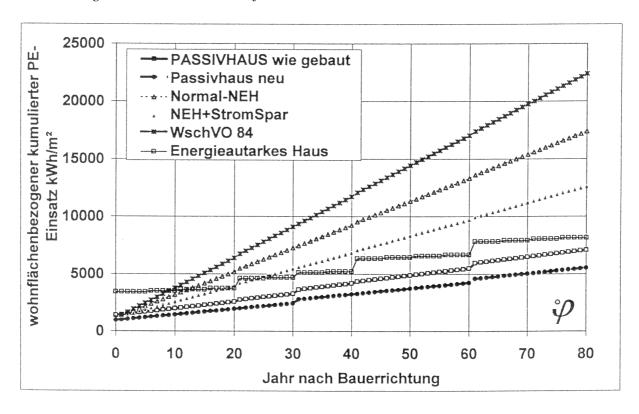

Optimaler k-Wert

Tabelle 1 : Primaerenergiebilanz des Dämmstoffs Polystyrol								
Dämmsystem : Thermohaut mit mineralischem Außenputz und Dämmstoff bestehend aus Polystyrol-Dämmplatten 15 kg/m3.								
Dämmstoff: Wärmeleitf Rohdichte spez. PEI.	ä. 0.04 15.00	W/mK kg/m3	urspr. k-W mittl. Tem mittl. Tem Südwand, S Gebäudefak	p. innen p. auβen olargewinnfa	17.00 6.34			
Nutz.dauer	25.00	Jahre	Oelheizung	, Feuerwirk r. Vers.kett	0.92			
Dicke der Dämmung	k-Wert W/m²K	Netto- wärmever.	Primären.	kummulierte Primären Einsparung kWh/m²	Primären. Aufwand			
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 12.50 15.00 17.50 20.00 22.50 25.00 27.50 30.00	1.41 1.04 0.83 0.69 0.59 0.51 0.45 0.37 0.34 0.31 0.26 0.22 0.20 0.18 0.16 0.14	75.80 56.05 44.46 36.84 31.45 27.44 24.33 21.86 19.84 18.17 16.75 14.02 12.06 10.57 9.42 8.49 7.73 7.09 6.55	0.00 24.54 38.94 48.40 55.09 60.08 63.94 67.01 69.51 71.60 73.36 76.75 79.19 81.03 82.47 83.62 84.57 85.36 86.03	0.00 613.55 973.41 1209.96 1377.32 1501.96 1598.39 1675.22 1737.87 1789.93 1833.89 1918.69 1979.72 2025.75 2061.70 2090.55 2114.22 2134.00 2150.76	5.26 10.52 15.78 21.04 26.30 31.56 36.82 42.08 47.34 52.60 65.75 78.90 92.05 105.20 118.35 131.50 144.65 157.80	608.29 962.89 1194.18 1356.28 1475.66 1566.83 1638.40 1695.79 1742.59 1781.29 1852.94 1900.82 1933.70 1956.50 1972.20 1982.72 1989.35 1992.96		
» 32.50 0.11 6.09 86.61 2165.14 170.95 1994.19 maximale NETTO-PRIMARENERGIEEINSPARUNG ≡ energetisch optimale Dämmu bei einem k-Wert von k(opt) = 0.11 W/m² K								
35.00 40.00 45.00 50.00 60.00 70.00 80.00 90.00 100.00 120.00 130.00 140.00	0.11 0.09 0.08 0.08 0.06 0.05 0.05 0.04 0.04 0.04 0.03 0.03	5.68 5.02 4.50 4.07 3.42 2.95 2.60 2.32 2.09 1.91 1.75 1.62 1.51	87.11 87.93 88.58 89.11 89.91 90.50 90.94 91.29 91.57 91.80 91.99 92.15 92.30 92.42	2177.63 2198.23 2214.53 2227.74 2247.85 2262.45 2273.52 2282.20 2289.19 2294.95 2299.77 2303.86 2307.38 2310.44	184.10 210.40 236.70 263.00 315.60 368.20 420.80 473.40 526.00 578.60 631.20 683.80 736.40 789.00	1993.53 1987.83 1977.83 1964.74 1932.25 1894.25 1852.72 1808.80 1763.19 1716.35 1668.57 1620.06 1570.98 1521.44		

Die Tabellen geben die Randbedingungen und Zahlenwerte für das vorhergehende Bild.

Quelle: W. Feist: Primärenergie- und Emissionsbilanzen von Dämmstoffen, Institut Wohnen und Umwelt (IWU), Darmstadt 6/1986

Gebäudevergleich – absolut

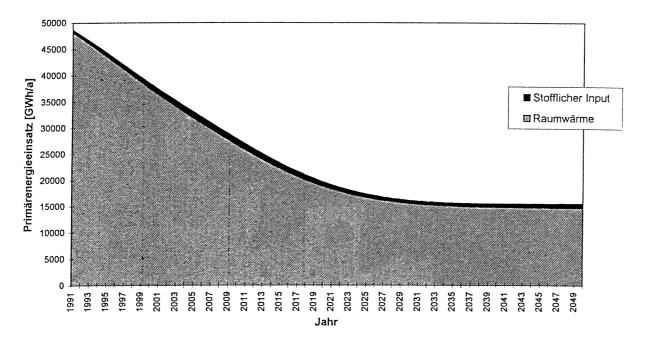


Dargestellt wird der über die Lebensdauer kumulierte Energieaufwand für die Herstellung, Instandhaltung und das Betreiben von Bauwerken mit unterschiedlichem energetischen Niveau – hier bezogen auf 1 m² Wohnfläche. Die Darstellung ermöglicht die Beurteilung von energetischen Anforderungsniveaus (Niedrigenergiehaus, Passivhaus) auf der Basis des Gesamtenergieaufwandes während ihrer Lebensdauer aus volkswirtschaftlicher Sicht. Gleichzeitig wird eine Beurteilung des relativen Anteils energetischer Aufwendungen für Errichtung, Instandhaltung, Beheizung und Strom möglich.

Der Kennwert Kumulierter Energieaufwand eignet sich für die Darstellung des lebenszyklusbezogenen Energieaufwandes von Bauwerken und eine Analyse des relativen Anteils aufwandsverursachender Bestandteile. Er dient gleichzeitig einem "Vergleichbarmachen" des Aufwandes an unterschiedlichen Endenergieträgern während der Nutzungsphase – hier Strom und Gas.

Quelle: W. Feist/W. Ebel u.a.: Stoffstöme und Kosten im Bereich Bauen und Wohnen, Teilbericht Energiebedarf und Stoffinventare von Wohngebäuden, Institut Wohnen und Umwelt (IWU) 10/1996, Darmstadt

Gebäudevergleich – zeitlicher Verlauf



Dargestellt wird der kumulierte Primärenergieaufwand für die Herstellung, Instandhaltung und das Betreiben von Bauwerken mit unterschiedlichem energetischen Niveau im zeitlichen Verlauf. Der Kennwert Kumulierter Energieaufwand eignet sich für die Darstellung des lebenszyklusbezogenen Energieaufwandes von Bauwerken und die Auswahl optimaler Nutzungszeiten für Bauwerke unterschiedlicher Bauweise und spezifischer energetischer Niveaus.

Quelle:

W, Feist/W.Ebel u.a.: Stoffstöme und Kosten im Bereich Bauen und Wohnen, Teilbericht Energiebedarf und Stoffinventare von Wohngebäuden, Institut Wohnen und Umwelt (IWU) 10/1996, Darmstadt

Anwendungsfall Gebäudebestände

Untersucht wird die Auswirkung eines stofflichen Einsatzes für die Sanierung und energetische Modernisierung innerhalb eines Bestandes von Bauwerken auf die Höhe des Gesamt-Primärenergieeinsatzes. Es wird deutlich, dass auch bereits in der Anfangsphase die energetische Verbesserung der Altbausubstanz in ausgewählten Beständen nicht zu einem Anwachsen des volkswirtschaftlichen Primärenergieeinsatzes führt. Der Kennwert Kumlierter Energieaufwand eignet sich für die Untersuchung volkswirtschaftlicher Zusammenhänge und langjähriger Trends auf der Ebene von Gebäudebeständen.

Quelle:

W, Feist/W.Ebel u.a.: Stoffstöme und Kosten im Bereich Bauen und Wohnen, Teilbericht Energiebedarf und Stoffinventare von Wohngebäuden, Institut Wohnen und Umwelt (IWU) 10/1996, Darmstadt