Bilanzierung von Schwermetallen – Auszüge aus dem Projekt:

"Nachhaltiger Umgang mit Verpackung - eine Vision für das DSD im Jahre **2020,** Wollny, V.; Dehoust, G.; Dopfer, J.; Gebers, B.; Hochfeld, C.; Stahl, H.; Cames M.; Matthes F., Gebhardt P., Öko-Institut, Darmstadt/Berlin"

Emissionsfaktoren der Stromerzeugung für Schwermetalle und PCDD/F

Schwermetallemissionen und Emissionen von langlebigen krebserzeugenden Schadstoffen sind bei Braun- und Steinkohlekraftwerken relevant. Für Schwermetalle werden Daten einer Studie des TÜV Rheinland herangezogen. Sie gelten als repräsentativ für Kohlekraftwerke in Deutschland (Tabelle 1) [Jockel/Hartje 1997]. Hinsichtlich der sonstigen langlebigen krebserzeugenden Schadstoffe liegen nur Daten für den Parameter PCDD/F vor [LAI 1993, Eduljee 1996]. Für Steinkohle ist ein Mittelwert der Tabelle 2 zu entnehmen. Bei Braunkohle gibt der Länderausschuss für Immissionsschutz (LAI) einen Wert von 1,1 E-9 g PCDD/F/GJ an [LAI 1993].

Tabelle 1 Schwermetallemissionsfaktoren für Stein- und Braunkohlefeuerungen

Parameter	Emissionsfaktor Steinkohle Jockel/Hartje 1997 [g/GJ]	Emissionsfaktor Braunkohle Jockel/Hartje 1997 [g/GJ]
As	8,3E-03	1,5E-03
Cd	8,3E-04	2,4E-04
Cr	3,9E-03	1,2E-03
Hg	7,9E-03	2,4E-04
Ni	8,1E-03	1,5E-03
Pb	2,6E-02	1,5E-03

Tabelle 2 PCDD/F-Emissionsfaktoren für Steinkohlefeuerungen

Emissionsfaktor LAI 1993	Emissionsfaktor Eduljee 1996	Mittelwert
[g TE PCDD/F/GJ]	[g TE PCDD/F/GJ]	[g TE PCDD/F/GJ]
7,8E-09	6,2E-09	7,0E-09

Emissionsfaktoren der Wärmebereitstellung für Schwermetalle und PCDD/F

Zur Emission von Schwermetallen liegen Daten von [Jockel/Hartje 1997] vor. Sie beziehen sich auf den Einsatz von Heizöl S (Tabelle 3) Die Emissionsfaktoren für

Kohle sind Tabelle 1 zu entnehmen. Die anderen Energieträger zur Bereitstellung von Prozesswärme, wie Gas und Heizöl EL verursachen nur vernachlässigbare Schwermetallemissionen.

Tabelle 3	Emissionsfaktoren	fiir	Schwerölfenerung	[Jockel/Hartie	19971
I auciic 3	Lillissionstaktoren	Tui	Schweroneucrung	1 JUCKUI/ I I al I I C	122/1

Parameter	Einheit
	g/GJ
As	0,0035
Cd	0,0002
Cr	0,0054
Нg	0,0037
Ni	0,3156
Pb	0,0197

Verfahrensbilanzierung Elektrostahl

In der Bilanz werden moderne Elektrolichtbogenöfen betrachtet. Die Emissionsfaktoren werden über den GEMIS-Prozess "Metall\Stahl-D-Elektro-neu" bilanziert. Der Abb. 1 ist das entsprechende Prozesskettenbild zu entnehmen. Wesentliche Datenquellen sind [Stahl 1992; Ullmann 1994 und UBA 1995]. Es werden sekundäre, abgeleitete Daten (Datenqualität mittel) verwendet. Für den Prozess wird in GEMIS ein modernes Elektrostahlwerk mit Sauerstoff- und Brennstoffeinsatz in Deutschland bilanziert. Die Emissionsfaktoren sind im Datenblatt Elektrostahlwerk dargestellt. Da GEMIS derzeit keine Daten für Emissionen von Schwermetallen und PCDD/F enthält, mussten diese zunächst in GEMIS eingegeben werden.

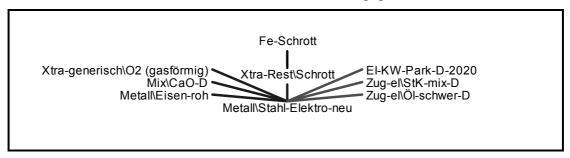


Abb. 1 Prozesskette für den Prozess "Metall\Stahl-D-Elektro-neu"

Angaben zu Schwermetallemissionen weichen je nach Input und Anlage deutlich voneinander ab. Eine Aufstellung von Schwermetallemissionen können der nachfolgenden Tabelle entnommen werden. Weitere Quellen¹ referieren nur die in der Tabelle aufgeführten Werte. Es muss festgestellt werden, dass die Schwermetallemissionen der Elektrostahlwerke stark schwanken. Da Schwermetalle nicht kontinuierlich gemessen werden, fehlt eine hohe Messdichte. Zusätzlich sind Einflüsse des Inputs sicherlich festzustellen. Sie können aber zur Zeit nicht quantifiziert wer-

Siehe Studie des JRC- "Best Available Technology", "Corinair Handbook" sowie Rentz [Rentz 1998]

den. Grundsätzlich ist bei allen Messkollektiven eine hohe Streuung der Messwerte zu beobachten.

Werden in Elektrostahlwerken RSH-Stähle erzeugt, können höhere Emissionen der Legierungselemente (Chrom, Nickel) beobachtet werden.² Für die Bilanzierung einfacher Stähle sind daher die Angaben zur Gesamtemissionssituation (Jockel/Hartje) nicht geeignet.

Tabelle 4 Übersicht Emissionsfaktoren von Schwermetallen

Quelle	VDEh/ UBA ¹	BSW/ UBA ²	BSW ³	CS-SE ⁴	Jockel / Hartje ⁵	IZW ⁶	diese Stu- die
Bezug	g/Mg RSt ⁷		g/Mg RSt	g/Mg RSt		g/Mg RSt	g/Mg RSt
Zeit	1994	1993/4	1999	1990-95	1995	1995	O O
As		0,201	0,012		0,017		0,05
Cd	0,006	0,077	0,006		0,150	0,004	0,01
Cr	0,308	0,172	0,03	0,2	3,800	0,19	0,2
Hg	0,283	0,330	0,12				0,25
Hg Ni	0,107	0,583	0,006	0,2	0,190	0,01	0,1
Pb	0,352	1,801	0,06	2	3,000	9,4	0,5

¹ abgeschätzt aus Untersuchung an Elektrostahlwerken, große Streuung [Theobald 1995]

Aus den verschiedenen Quellen wird für diese Untersuchung ein Datensatz abgeleitet (siehe "diese Studie"). Es bleibt festzuhalten, dass die eingesetzten Schwermetallemissionen nur Anhaltswerte darstellen können.

Verfahrensbilanzierung Primärstahlherstellung

Die Emissionsfaktoren zur Primärstahlproduktion werden über den GEMIS-Prozess "Metall\Stahl-D-Oxygen" ermittelt. Datenbezug ist Deutschland. Als wesentliche Datenquellen dienten [Stahl 1993, UBA 1995]. Es werden zur Bilanzierung in GEMIS sekundäre, abgeleitete Daten (Datenqualität mittel) herangezogen. Der Abb. 2 ist die Prozesskette Stahlerzeugung zu entnehmen.

² abgeschätzt aus Untersuchung der Badischen Stahlwerke, verschiedene Inputs [Weiss 1996]

³ abgeschätzt aus der Umwelterklärung der Badischen Stahlwerke [BSW 2000]

⁴ Coordinated Study "Steel Environment", kleines Kollektiv [EU 1996]

⁵ Prognose der Emissionen, abgeleitet aus einem großen Messkollektiv [Jockel/Hartje 1997]

⁶ Ökobilanz des Informationszentrums Weißblech, inklusive Walzbetrieb [IZW 2000]

⁷ RSt: Rohstahl

² Angaben zu Schwermetallemissionen einzelner Firmen in NRW können auf dem WWW-Server des Landesumweltamtes NRW abgerufen werden: http://www.lua.nrw.de/emikat97/start.htm.

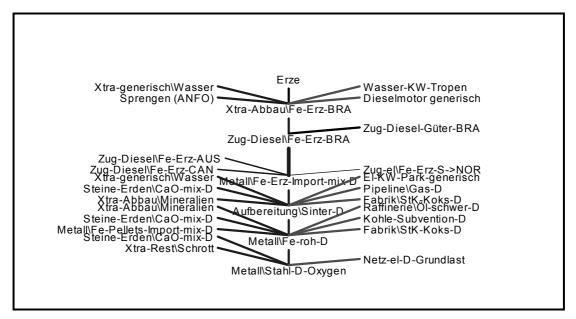


Abb. 2 Prozesskette "Metall\Stahl-D-Oxygen"

Da für Schwermetalle und langlebige organische Schadstoffe, z. B. PCDD/F aus GEMIS, keine Daten abrufbar sind, wird hierzu auf Literatur, die für die wesentlichen Prozessschritte der Stahlproduktion (Pelletierung, Sinterung, Hochofen, Blasstahlwerk) Daten liefert, zurückgegriffen. Für Schwermetalle werden für die einzelnen Prozessschritte Daten einer Studie des TÜV Rheinland, die im Auftrag des Umweltbundesamtes erstellt wurde, herangezogen. Die Daten gelten als repräsentativ für Deutschland. Mit Hilfe einer Massenbilanz [ETH 1996a] werden Emissionsfaktoren für den Gesamtprozess ermittelt (Tabelle 5). Bei den Daten in der Tabelle handelt es sich um gewichtete Mittelwerte aus west- und ostdeutscher Stahlproduktion [Jockel/Hartje 1997].

Tabelle 5 Emissionsfaktoren für Schwermetalle bei einzelnen Prozessen der Stahlproduktion

Parameter	Pelletierung	Sinterung	Hochofen	Blasstahl	Kokerei	Gesamtprozess
	g/Mg Pellets	g/Mg gesintertes Erz	g/Mg Stahl	g/Mg Blasstahl	g/Mg Koks	g/Mg Stahl
As	0,04	0,018	0,048	0,0015	0	0,079
Cd	0,01	0,032	0,0040	0,0135	0,010	0,054
Cr	0,04	0,107	0,080	0,21	0,040	0,41
Hg	0,04	0,01	0,025	0	0,010	0,053
Ni	0,10	0,16	0,12	0,036	0,020	0,34
Pb	0,05	1,67	0,92	0,51	0,050	2,88

Tabelle 6 Herleitung der Emissionsfaktoren für PCDD/F beim Sinterungsprozess

	Quelle	Reingaskonz. ng TE/m3	eingasvolumenstro m3/h	Produktion max. Mg/h	Emissionsfaktor ng TE/Mg Produkt
Sinter	Lahl1994	2	500.000	260	3.846
Sinter	Angrik 1994	2,9	500.000	260	5.577
Sinter	LAI 1993	1,9	1.000.000	260	7.308
Sinter	LAI 1993	2,5	500.000	260	4.808
Sinter	LUB 1997	2,31	500.000	333	3.468
Sinter	LUB 1997	1,13	500.000	333	1.697
Mittelwert					4.451

Tabelle 7 Herleitung der Emissionsfaktoren für PCDD/F beim Hochofenprozess

Quelle	Durchsatz	Konz.	Abgasvolumenstr.	Fracht	Fracht	gew. Durch.
	Mg/d	ng TE/m3	m3/Mg	ng TE/Mg	ng/d	ng/Mg
LAI 1993, Nr. 1	600	0,02	2.800	58,80	35.280	
LAI 1993, Nr.2	600	0,00	3.640	10,92	6.552	
LAI 1993, Nr. 3	18.000	0,03	878	28,10	505.728	
LAI 1993, Nr. 4	9.000	0,00	1.868	3,36	30.262	
Summe	28.200				577.822	20,5

Tabelle 8 Herleitung der Emissionsfaktoren für PCDD/F bei der Blasstahlproduktion

Quelle	Konz.	Abgasvolumenstr.	Fracht
	ng TE/m3	m3/Mg	ng TE/Mg
LAI 1993, Nr. 1	0,089	2.000	178
LAI 1993, Nr.2	0,023	2.000	46
Angrik 1994	0,175	2.000	350
Jager 1993	0,04	2.000	80
Mittelwert			164

Zu langlebigen krebserzeugenden Schadstoffen liegen lediglich für PCDD/F Emissionsfaktoren in ng TE/m³ Abluft für die Prozessschritte Sinterung, Hochofen, Stahlwerk vor. Über Anlagendurchsätze und Abgasvolumenströme der einzelnen Anlagen konnten jeweils durchschnittliche Emissionsfaktoren in ng TE/Mg Produkt ermittelt werden. Getrennt nach Prozessschritt ist die Verfahrensweise in Tabelle 6 bis Tabelle 8 dargestellt. Die Ermittlung des Emissionsfaktors für den Gesamtprozess der Stahlerzeugung erfolgt wieder über dessen Massenbilanz [ETH 1996a].

Für den Gesamtprozess ergibt sich ein Emissionsfaktor von 4.200 ng/Mg Stahl.